Skip to main content Skip to main navigation menu Skip to site footer

Nanoenkapsulasi senyawa bioaktif daun salam (Syzygium polyanthum) menggunakan surfaktan tween 80 di dalam ruang berbentuk tabung berdiameter 500 μm

Abstract

Background: The bioactive compounds found in bay leaves have an abundance of potential to be used in the future, particularly as pharmaceutical ingredients as they consist of several beneficial characteristics, such the ability to reduce cholesterol and act as antioxidants, anti-inflammatory, and antibacterial. These bioactive compounds also have characteristics that make it very difficult for them to dissolve in water, evaporate easily, and decay easily, leading to numerous difficulties for their utilization. This problem has been solved using the nanoencapsulation method.

Objective: This study aimed to nanoencapsulate bioactive compounds in bay leaves using a surfactant in a 500 μm diameter tube.

Method: Tween 80 surfactant was used to perform nanoencapsulation in a tubular chamber with a diameter of 500 μm. A very small and constant amount of the liquid precursor mixture can be used in a tubular chamber with a very small diameter to produce nanoparticles with a tiny size. Precursor mixing occurs very quickly because of the immense mass movement in the tube.

Results: The average diameter of nanoparticles produced through nanoencapsulation ranges from 16.6 nm to 20.3 nm. There were four distinct mass concentrations of the bioactive compounds found in bay leaves used: 8 mg, 10 mg, 12 mg, and 14 mg. It was discovered that the average diameter of the produced nanoparticles and their polydispersity index rose as the mass of the utilized bioactive compounds concentrate increased.

Conclusions: According to the results of this study, bay leaf bioactive compound nanoparticles were successfully encapsulated in nanometers utilizing a 500 μm diameter tube-shaped chamber. The resulting nanoparticles have a single distribution and average sizes that are relatively small.

 

Latar Belakang: Senyawa bioaktif daun salam memiliki potensi yang sangat besar untuk dikembangkan ke depan terutama sebagai bahan obat-obatan karena memiliki sifat-sifat yang sangat berguna, seperti: dapat menurunkan kolesterol, bersifat antioksidan, antiinflamasi, dan antibakteri. Namun senyawa bioaktif ini juga memiliki sifat yang sangat sulit larut di dalam air, mudah menguap dan mudah terdegradasi sehingga pemanfaatannya mengalami banyak hambatan. Untuk mengatasi hal tersebut pendekatan nanoenkapsulasi dilakukan.

Tujuan: Penelitian ini bertujuan untuk menanoenkapsulasi senyawa bioaktif daun salam menggunakan suatu surfaktan di dalam ruang berbentuk tabung berdiameter 500 μm.

Metode: Nanoenkapsulasi dilakukan di dalam ruang berbentuk tabung berdiameter 500 μm menggunakan surfaktan tween 80. Di dalam ruang berbentuk tabung dan berdiameter sangat kecil, volume cairan campuran prekursor yang digunakan dapat diatur sangat kecil dan teratur sehingga nanopartikel yang diperoleh dapat berukuran sangat kecil. Proses pencampuran prekursornya sangat cepat karena transport massa di dalam tabung sangat tinggi.  

Hasil: Nanopartikel yang dihasilkan dari nanoenkapsulasi memiliki diameter rata-rata dari 16,6 nm – 20,3 nm. Empat ragam massa konsentrat senyawa bioaktif daun salam digunakan, yaitu 8 mg, 10 mg, 12 mg, dan 14 mg. Diperoleh bahwa ketika massa konsentrat senyawa bioaktif yang digunakan ditambah, diameter rata-rata nanopartikel yang dihasilkan dan indeks polidispersitasnya bertambah.

Simpulan: Nanopartikel senyawa bioaktif daun salam telah berhasil dienkapsulasi berukuran nanometer dengan menggunakan ruang berbentuk tabung berdiameter 500 μm. Ukuran diameter rata-rata nanopartikel yang dihasilkan pun sangat kecil dan berdistribusi tunggal.

References

  1. Rahim ENAA, Ismail A, Omar MN, Rahmat UN, Ahmad WANW. GC-MS Analysis of phytochemical compounds in Syzygium polyanthum leaves extracted using ultrasound-assisted method. Pharmacognosy Journal. 2018;10(1):110-119.
  2. Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon. 2019;5(e01485).
  3. Sabandar CW, Jalil J, Ahmat N, Aladdin NA, Zawawi NKNA, Sahidin I. Anti-inflammatory and antioxidant activity of Syzygium polyanthum (Wight) walp. Sains Malaysiana. 2022;51(5):1475-1485.
  4. Aditya R, Santoso B, Widjiati W. Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study. Journal of Pharmacy & Pharmacognosy Research. 2022;10(4):725-736.
  5. Iskandi S, Fauziah F, Oktavia S. Review: antibacterial activity of Syzygium polyanthum. International Journal of Pharmaceutical Sciences and Medicine (IJPSM). 2021;6(8):182-186.
  6. Bazana MT, Codevilla CF, Menezes CR. Nanoencapsulation of bioactive compounds: challenges and perspectives. Current Opinion in Food Science. 2019;26:47–56.
  7. Pateiro M, Gomez B, Munekata PES, Barba FJ, Putnik P, Kovacevic DB, dkk. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules. 2021; 26(6):1547.
  8. Khedr A, Striolo A. Quantification of ostwald ripening in emulsions via coarse-grained simulations. Journal of Chemical Theory and Computation. 2019;15:5058−5068.
  9. Suyal J, Kumar B, Jakhmola V. Novel approach self-nanoemulsifying drug delivery system: a review. Advances in Pharmacology and Pharmacy. 2023;11(2):131-139.
  10. Abiev RS. Gas-liquid and gas-liquid-solid mass transfer model for Taylor flow in micro (milli) channels: A theoretical approach and experimental proof. Chemical Engineering Journal Advances. 2020;4(100065).
  11. Sudharsan S, Saravanan R, Shanmugam A, Vairamani S, Kumar RM, Menaga S, dkk. Isolation and characterization of octadecanoic acid from the ethyl acetate root extract of trigonella foneum graecum L. by using hydroponics method. Bioterrorism & Biodefense. 2011;2(1):1-4.
  12. Linton REA, Jerah SL, Ahmad IB. The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus. International Journal of Scientific and Technology Research. 2013;2(10):181-184.
  13. Alqahtani FY, Aleanizy FS, Mahmoud AZ, Farshori NN, Alfaraj R, Al-Sheddi ES, dkk. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of lepidium sativum seed oil. Saudi Journal of Biological Sciences. 2019;26(5):1089-1092.
  14. Abubacker MN, Deepalakshmi T. In vitro antifungal potentials of bioactive compound methyl ester of hexadecanoic acid isolated from Annona muricata Linn. (Annonaceae) leaves. Biosciences Biotechnology Research Asia. 2013;10(2):879-884.
  15. Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria. Journal of Basic Microbiology. 2021;61(6):557-568.
  16. Abiev RS. Gas-liquid and gas-liquid-solid mass transfer model for Taylor flow in micro (milli) channels: a theoretical approach and experimental proof. Chemical Engineering Journal Advances. 2020;4(100065):1-23.
  17. Erfle P, Riewe J, Bunjes H, Dietzel A. Stabilized production of lipid nanoparticles of tunable size in Taylor flow glass devices with highsSurface-quality 3D microchannels. Micromachines. 2019;10(4):220.

How to Cite

Waruwu , A. S. D., & Saragih, H. (2023). Nanoenkapsulasi senyawa bioaktif daun salam (Syzygium polyanthum) menggunakan surfaktan tween 80 di dalam ruang berbentuk tabung berdiameter 500 μm. Intisari Sains Medis, 14(2), 456–465. https://doi.org/10.15562/ism.v14i2.1704

HTML
0

Total
0

Share

Search Panel

Angel Sri Diendra Waruwu
Google Scholar
Pubmed
ISM Journal


Horasdia Saragih
Google Scholar
Pubmed
ISM Journal